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Abstract 
A recently developed third order+second order perturbation density functional approximation (DFA) is briefly 
described. The applicability of this theory is demonstrated in the study of the density profiles of Lennard-Jones 
(LJ) fluid next to a large hard sphere (mimicking a colloidal particle) of various sizes. The accuracy of DFA 
predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. The chosen density 
and potential parameters for the equilibrium bulk LJ fluid correspond to the conditions situated at ‘dangerous’ 
regions of the phase diagram, i.e. near the critical temperature or close to the gas-liquid coexistence curve. It is 
found that the DFA theory performs successfully for both supercritical and subcritical temperatures. It is also 
shown that the ‘universality’ of the adjustable parameter associated with this theory holds also in the present case 
of a large spherical particle as a source of external potential. Here the term universality means independence of 
this parameter on the particular external field responsible for the generation of a non-uniform density profile 
of the fluid. This DFA results can be used as a useful starting point for further investigation of solvent-induced 
excess potential of mean force in the similar systems.
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1. Introduction

A powerful theoretical tool for the calculation 
of the inhomogeneous fluid structure is the so-called 
density functional theory (DFT),1 which was introduced 
into the classical statistical mechanics since more than 
four decades.2 The classical DFT has also its quantum 
counterpart (quantum DFT), originally devised for the 
simplified solution of the complicated quantum many-
body problems.3 During the time since its development, 
four main methodologies of the classical DFT have 
been evolved. One such version is the functional 
perturbation expansion approximation4 (FPEA ) for 
the excess free energy of the non-uniform system 
around that of the homogeneous system in powers of 
the density deviation between the non-uniform density 
distribution and bulk density. The coefficients at this 
expansion represent the direct correlation functions 
(DCFs) of the uniform system. In most of the early 
studies, this expansion was truncated at the second 
order due to the lack of the knowledge of the higher 
order DCFs even for the uniform bulk fluid. In a recent 
study,5 higher order expansion approximation has been 

developed by making use of approximate higher order 
DCFs. A new version of the FPEA, which is also of 
second order but actually including a content of the 
higher orders, is the so-called Lagrangian theorem-
based DFA (LTDFA)6 and its free version comprising 
an adjustable parameter.7 Another type of DFT is the 
so-called weighted density approximation1 (WDA) and 
its various variants,8 which are actually mappings of non-
uniform systems into uniform counterparts and include 
approximate contributions to the free energy density 
functional from all orders in density difference. In the 
WDA approach, the excess free energy or its functional 
derivative (the first order DCF) of the non-uniform 
fluids are approximated by those of the corresponding 
uniform fluid at a smoothed average density, which 
is actually a suitable weighted average of the physical 
density of the system under consideration. The third 
variety of DFT is the fundamental measure theory 
proposed by Rosenfeld.9 It is based on geometrical 
considerations and specifies the excess free energy by 
reproducing the Percus-Yevick (PY) equation of state 
and the PY second order DCF of the hard sphere fluid. 
Recently, the fourth kind of DFT has been proposed.10 
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It uses the concept of the universality of the free energy 
density functional and collects all of the higher orders 
beyond the second order of the functional perturbation 
expansion in the form of bridge functional. All of these 
versions of the DFT were originally devised for non-
uniform hard sphere fluid. However, their extensions 
to non-hard sphere models represent different stories. 
Briefly speaking, these extensions1 treat the tail part of 
the interaction potential by mean field approximation 
and the hard-core part by the hard sphere DFA, the two 
exceptions being the universal theoretical way11 and the 
so-called third order+second order perturbation DFA12 
proposed by one of the present authors. It was shown13 
that the latter theory performs well on condition of the 
high reliability of the imported bulk second order DCF. 
A key problem associated with this theory is the use of 
an adjustable parameter. In a series of our previous 
works,13,14 we determined this parameter by employing 
the single hard wall sum rule and then used the same 
value of this parameter also for other external fields 
that considerably deviated from that imposed by a single 
wall. In this way we found a ‘transplant’ property of 
the adjustable parameter in a sense of its applicability 
for any inhomogeneous environment, which has been 
denoted as a ‘universality’ of this parameter. 

The aim of the present investigation is to test the 
universality of the adjustable parameter and to give 
a judgment about the validity and the applicability of 
the third order+second order perturbation DFA in 
predicting the inhomogeneous structure of a prototype 
model fluid. For the latter we have chosen the Lennard-
Jones (LJ) model, which has been the most frequently 
applied to model the attractive dispersion forces in a 
variety of physical situations ranging from the simplest 
case of modeling the interactions in simple fluids to 
much more complex systems including solvent averaged 
interactions in colloidal suspensions. This model has 
been especially popular also as the sample model used 
for critical tests of statistical mechanical theories. In 
our previous paper,14 LJ model was used to estimate the 
accuracy of the third order+second order perturbation 
density functional approximation (DFA) in predicting 
the structure of this fluid subjected to diverse external 
fields stemming from the presence of various spatial 
constrains reflecting various degree of confinement. 
For the latter, we have chosen a hard flat interface, a 
planar slit consisting of two parallel, perfectly smooth 
hard walls, and a closed spherical surface mimicking a 
spherical cavity. DFA predictions were tested against 
the results of a grand canonical ensemble Monte Carlo 
(GCEMC) simulation. In the present work, we report 
on an analogous study of the structure of LJ fluid 
around a large hard sphere of different sizes mimicking 
an inhomogeneous system formed by single spherical 
colloidal particle immersed in a LJ solvent. Apart from 

the primary goal of the present work, i.e. the critical 
test of the theoretical method, this investigation is 
significant also from the view of the model used. 
Namely, the theoretical study of the structural and 
related thermodynamic properties of asymmetric 
fluid mixtures is very important for understanding a 
variety of problems in colloid chemistry as a colloid 
dispersion can be modeled as a multicomponent 
system formed by large (macro)particles mimicking 
colloidal solute and smaller molecules denoting the 
solvent component. The determination of the local 
structure of such inhomogeneous systems has therefore 
long been the subject of intense theoretical research 
and numerous studies have reported the results of 
thermodynamic and structural properties of fluids in 
the vicinity of macroparticles of different shapes. A 
particular attention has been paid to the dependence of 
these properties on the size of colloidal macroparticles. 
The structure of the molecular solvent in the interface 
among colloidal particles is also responsible for the 
intercolloidal solvation force, often called also as 
solvent mediated or structural force. As colloidal 
particles take part in various chemical and biological 
reactions, knowledge of the solvation force is also of 
great practical importance. For this reason, the present 
results will also serve as a useful starting point for the 
further investigation of solvent-induced excess potential 
of mean force in the similar systems. 

2. Model and Methods

2.1. The Model
    As in our previous work14 we consider the 

Lennard-Jones (LJ) fluid with the potential function
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where ε  and σ are the energy and size parameters 
of the potential, respectively. In the following the 
reduced units are used for the absolute temperature T, 

εkTT =*   with k being the Boltzmann constant.
Further, the interaction among the LJ particles 

and large spherical particle of effective radius R is a 
hard core one: 

( )
elsewhere,0=

<∞= Rext rrϕ
 (2)

where extϕ  denotes the external potential.

2.2. Open Ensemble Simulation 
For the LJ model of Eq. (1) we have carried out 

Grand Canonical Ensemble Monte Carlo (GCEMC) 
simulations at constant chemical potential µ, volume 
V, and temperature T. This set of independent 
parameters that define the thermodynamic state of 
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the system made possible the study of equilibrium 
between the bulk LJ fluid and the same fluid subjected 
to external field originating from the presence of the 
large spherical particle. The general features of the 
GCEMC method are described elsewhere.15 Further, 
some details peculiar to this study are discussed in our 
previous work.14 Therein, the results of independent 
simulations of the bulk LJ fluid are also presented. 
Apart from our interest in the bulk interparticle 
correlations, these simulations were needed to adjust 
the values of the chemical potential to the desirable 
bulk densities. Because of the equilibrium, of course, 
the same values for the chemical potential were then 
used in the simulation of the present inhomogeneous 
system, where, similarly as in the case of homogeneous 
(bulk) phase, the Monte Carlo (MC) cell was a cubic 
box with the periodic boundary conditions imposed in 
all three directions. The LJ fluid surrounded a large 
hard sphere located at the center of the cell. Simulations 
of the system with bigger central particle requested 
larger dimensions of MC box to assure distances larger 
than the distance where correlations between the hard 
particle from the basic MC cell and its images from 
the surrounding cells were still detected. In addition, 
our recent work mentioned above contains also the 
simulation results for the density profiles of the LJ 

fluid near a single hard wall. By considering the contact 
theorem, the value for an adjustable parameter was 
determined from the corresponding simulation data for 
each set of the bulk potential and density parameters. 
This parameter is included in the DFA theory briefly 
described in the next section. 

The liquid-gas phase behavior of the pure LJ fluid 
was investigated by Potoff and Panagiotopoulos.16 Using 
grand canonical MC simulations they determined the 
liquid-vapor coexistence curve and critical point. The 
critical parameters of the untruncated LJ potential 
were assessed as *

cT = 1.312 and =*
cρ  0.316. We have 

performed calculations for two reduced temperatures, 
the value of the first being slightly higher and that of 
the latter slightly lower than the critical value 1.312. 
The ratio between the chosen supercritical temperature 
and the critical value was 1.06. For this regime, a broad 
range of bulk reduced densities ranging from the value 
0.1 to 0.7 has been investigated. The ratio between the 
chosen subcritical temperature and the critical value was 
0.98. For this subcritical regime, however, only narrow 
1-phase regions corresponding either to monophasic 
gaseous state (low densities) or monophasic liquid state 
(high densities) could be explored. For this reason, 
there are only a few simulation data presented for this 
regime.

2.3. Third Order+Scond Order Perturbation Density Functional Theory
In the following we give a concise description of the third order+second order perturbation DFT approach.13,14 

The approximate analytical expression for the bulk third order direct correlation function (DCF) of the hard sphere 
(HS) fluid is given by5 
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where the subscript ‘hs’ denotes the quantities for the HS fluid. Throughout the text, superscript ( )n  denotes the 
corresponding n-order quantities; absence of the subscript 0 refers to non-uniform case, while the presence of the 
subscript 0 refers to the uniform system. Functional perturbation expansion of the non-uniform first order DCF ( ) [ ]( )ρ;1 rhsC   
for HS fluid around the equilibrium bulk density bρ  leads to the expression
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Discarding away all of the terms with n<3 in the sum of Eq. (4) then yields
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Combination of Eqs. (3) and (5) leads to the so-called hard sphere third order perturbation DFT approach
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In the framework of the partitioned DFT 
formalism12,17 one splits the bulk second order DCF 

( ) ( )⋅⋅⋅brC ρ;2
0  into the hard-core part ( ) ( )⋅⋅⋅bhc rC ρ;2

0  and 
tail part ( ) ( )⋅⋅⋅btail rC ρ;2

0 :
( )( ) ( ) ( ) ( ) ( )⋅⋅⋅+⋅⋅⋅=⋅⋅⋅ btailbhcb rCrCrC ρρρ ;;; 2
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2
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2
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Here, the set ( ) ( )⋅⋅⋅btail rC ρ;2
0   stands for the bulk density and 

potential parameters. The tail part ( ) ( )⋅⋅⋅btail rC ρ;2
0  is usually 

only weakly dependent on the density argument.12,17,18 
This allows the tail part ( ) ( )⋅⋅⋅btailC ρ;1 r  of the non-
uniform first order DCF to be treated by the second 
order functional perturbation expansion approximation 
(FPEA)

where
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For the hard-core part, one can directly apply the so-called hard sphere third order perturbation DFT approach 
comprised in Eq. (6). Here, the term ‘directly’ is used in a sense of a direct substitution of the quantities for HS fluid 
by the corresponding quantities for hard-core part in hard sphere third order perturbation DFT approach. After 
applying the Eq. (6) to hard-core part, one has
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 in the last Eq. (14) is used as an adjustable parameter denoted by λ. Then

 we finally have:

Further, a combination of Eqs. (7-13) leads to 
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Combination of Eq. (15) and the expression for the single component density profile given by
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can be used to predict the density profile of the single 
component atomic fluid subjected to diverse external 

fields. Here ( )rextϕ  is the external potential responsible 
for the generation of the inhomogeneous spatial density 
distribution ( )rρ . In the present work the above Eqs. 
(15) and (16) are applied for the calculation of the 
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density profiles of LJ fluid under the influence of  
external potential denoted by Eq. (2). The LJ potential  
is truncated and shifted at rc as done in the simulation, 
the resultant potential ( )rutslj  is given by

( ) ( ) ( )
c

ccljlj
ts
lj

rr
rrrururu

≥=

≤−=

0  (17)

The required bulk second order DCF ( ) ( )⋅⋅⋅brC ρ;2
0  is 

obtained numerically from the OZ integral equation 
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Above, ( ) ( )rurs 2βγ −=  is the so-called renormalization 
indirect correlation function and B is the bridge 
functional specified as follows:

along with the closure relation
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The bridge functional, Eq. (20), is obtained by 
substituting a well-known VM bridge functional with 
-0.5s2 for 0<s ,19 and leaving it unchanged for 0≥s . The 
expression for the perturbation part of the potential ( )ru2β  
is taken from the Ref. 20. The adjustable parameter λ 
we determine by a single hard wall sum rule, similarly 
as done in our previous works on hard-core attractive 
Yukawa (HCAY) fluid13 and LJ fluid.14

    First, the adjustable parameter λ for each set of 
parameters of the coexistence bulk fluid is determined 
by the single hard wall sum rule. The pressure of the 
equilibrium bulk fluid required for this purpose is 
obtained by considering the contact theorem relating 
the pressure and the single hard wall contact density. 
For the latter we utilize the exact simulation result, the 
pressure being equal to ( ) βσρ 5.0 . This means that 
the parameter λ is adjusted to the value ensuring the 
equality of the single hard wall contact density predicted 
by the present DFT approach and that obtained by 
‘exact’ simulation method. Because of the universality 
of the adjustable parameter λ one can use the same 
numerical value obtained from the single hard wall 
case also for other external potentials, here the one 
originating from the presence of a single large hard 
sphere, Eq. (2).

3. Numerical Results and Discussion

In Figures 1 and 2 the GCEMC and DFT results 
for the density profiles of the LJ fluid near large hard 
spheres in equilibrium with the bulk fluid are compared. 

The corresponding values for the adjustable parameter 
λ, obtained for each temperature and bulk density, are 
also presented. Calculations were performed for two 
reduced temperature: at supercritical temperature 

*06.1 cT⋅   (Figure 1) and at subcritical temperature *98.0 cT⋅  
(Figure 2). For the supercritical regime, the values of 
the bulk reduced density cover a broad range from 0.1 to 
0.7. Subcritical regime, however, is represented by only 
two values of the bulk density lying in narrow 1-phase 
regions of the phase diagram corresponding either to 
monophasic gaseous state (low density) or monophasic 
liquid state (high density). Three different sizes of the 
hard sphere are considered: the largest one with the 
radius σ5=′R , a relatively small sphere of σ1=′R , 
and one of intermediate size σ2=′R . The centers of 
the particles of LJ fluid are therefore constrained to 
the distances )2( σ+′=> RRr . Both figures contain 
parts (a)-(c), which successively illustrate the effect of 
the increasing of the size of the large sphere. 

A careful inspection of the presented local 
structures around the hard spherical body leads to a 
conclusion that the DFT predictions excellently agree 
with the simulation results. Except at the large sphere/
fluid contact surface and its immediate vicinity, the DFT 
density profiles agree quantitatively with the simulation 
data. Both methods predict distinct density oscillations 
in the domain close to the surface of the large particle 
revealing important packing effects due to the finite 
size (excluded volume) of the molecules of the fluid. 
Of course, the amplitude of the oscillations depends on 
the density of the equilibrium bulk fluid and also on the 
temperature of the system. At higher temperature, the 
attraction among the molecules loses in importance in 
comparison with their thermal energy. Such molecules 
thus resemble the hard (repulsive) particles that, due to 
the steric shielding effects, tend to accumulate adjacent 
to the boundary of the constraint thus giving rise to 
higher contact values and more pronounced oscillations 
of the local density. Upon reducing temperature, 
the role of the attractive part in the intermolecular 
potential of interaction increases causing an efficient 
competition of interparticle attraction with the steric 
effects. In this case, the strongly attractive molecules 
try to avoid the region near the hard sphere as they 
have a better chance for mutual attraction at sufficient 
distances from the repulsive constraint. This leads to a 
reduction of the contact density and amplitude of the 
oscillations that gradually disappear. As noted above, 
the agreement between the theory and simulation is 
excellent except in close vicinity of the hard sphere/fluid 
contact plane where a slight deviation can be observed. 
As expected, this deviation slightly increases upon the 
reducing the size of large sphere as the performance 
of the theory should improve with increasing the size 
of the macroparticles. Finally, it should do the best job 
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Figure 1. Monte Carlo (symbols) and density functional (lines) 
results for the density profiles of the LJ fluid near a large spherical
particle of effective radius R = 1.5σ (a), R = 2.5σ (b), and  
R  = 5.5σ  (c), at the supercritical reduced temperature  
T*/Tc

* = 1.06 and at different values of the bulk reduced density. λ is 
the adjustable parameter determined by the single hard wall sum rule 
considering the contact theorem using the exact simulation results 
for the contact densities. 

Figure 2. Monte Carlo (symbols) and density functional (lines) 
results for the density profiles of the LJ fluid near a large 
spherical particle of effective radius R = 1.5σ (a), R = 2.5σ 
(b), and R = 5.5σ (c), at the subcritical reduced temperature  
T*/Tc

* = 0.98 and at two values of the bulk reduced densities: (i) 
ρbσ 3 = 0.103 (gaseous state) and (ii) ρbσ 3 = 0.613 (liquid state). 
λ is the adjustable parameter determined by the single hard 
wall sum rule considering the contact theorem using the exact 
simulation results for the contact densities. 

in the limit of infinite macroparticle size resembling a 
flat single hard wall. At the supercritical temperature 
(Figure 1) it is interesting to observe somewhat larger 
deviations of the DFT results from the GCEMC data 
at intermediate bulk density approx. 0.3. This feature 
stem from the fact that this density corresponds to the 
condition of the bulk fluid lying in the most vicinity to 
the critical point. 

A general observation following from the 
comparison between the theoretical DFT predictions 
and simulation data confirm the universality of the 
adjustable parameter λ, which is comprised in the 
DFT calculations. This means that it is independent 
on the external field responsible for the generation of 
the spatial inhomogeneous structure of the fluid. At a 
given set of bulk density and potential parameters, the 
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value of this parameter is determined by a single hard 
wall sum rule. The same value for λ is then used in the 
case of other external potentials. 

4. Conclusions

In this paper we describe the general formalism 
of the third order+second order perturbation density 
functional approximation (DFA). The applicability of 
the DFA theory is demonstrated in the study of the 
structure of Lennard-Jones (LJ) fluid near a single 
large hard sphere of various sizes. The accuracy of 
DFA predictions is tested against the results of a grand 
canonical ensemble Monte Carlo simulation. The LJ 
fluid in this inhomogeneous system maintains equilibrium 
with the bulk LJ fluid, which is at the conditions situated 
at ‘dangerous’ regions of the phase diagram, i.e. the 
supercritical regions but near the critical temperature, or 
subcritical regions but close to the gas-liquid coexistence 
curve. The simulation data serve as a strict standard test 
for the validity of any density functional approximation 
(DFA), and concomitantly for the universality of the 
adjustable parameter, which is comprised in the DFA 
calculations. In this way, we found that the universality of 
this parameter holds also for the present inhomogeneous 
case. These results will also serve as a useful starting point 
for the further investigation of solvent-induced excess 
potential of mean force (PMF) in the similar systems. 
In a recently proposed framework21 for the calculation 
of the solvent-induced excess PMF, the density profile 
of solvent particles around a single spherical solute 
particle represents important input information. For 
this reason, a theoretical method yielding sufficient and 
reliable results for this inhomogeneous fluid structure 
is significant for numerical implementation of the 
calculation framework.
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Povzetek 
Opisane so osnovne značilnosti ene inačic teorije gostotnega funkcionala, to je perturbacijske teorije drugega in 
tretjega reda. Uporabnost te teorije smo preizkusili pri obravnavi strukture Lennard-Jones-ove (LJ) enostavne 
tekočine okoli velikih togih kroglic, ki ponazarjajo koloidne delce v disperziji. Zanesljivost teorijskih rezultatov 
smo preverili z računalniško simulacijo Monte Carlo odprtega sistema, ki omogoča obravnavo ravnotežja med 
nehomogenim in homogenim sistemom. Račune smo izvedli pri dveh temperaturah, ki sta bili le malo pod oz. 
nad kritično vrednostjo. Dobro ujemanje rezultatov obeh metod dokazuje, da je predlagana teorija zelo primerna 
za obravnavo strukturnih značilnosti nehomogenih sistemov. Rezultate bomo uporabili kot izhodišče za nadaljno 
obravnavo potenciala srednje sile med koloidnimi delci v sorodnih sistemih.


